May 6, 2021
Favbet Bonus =====================================

Шина (компьютер) — Википедия

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 29 мая 2020; проверки требуют

2 правки

.

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 29 мая 2020; проверки требуют

2 правки

.

что такое шины в компьютере

У этого термина существуют и другие значения, см.

Шина

.

Компьютерная ши́на (англ. computer bus) в архитектуре компьютера — соединение, служащее для передачи данных между функциональными блоками компьютера. В устройстве шины можно различить механический, электрический (физический) и логический (управляющий) уровни.

В отличие от соединения точка-точка, к шине обычно можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор разъёмов (соединений) для физического подключения устройств, карт и кабелей.

Компьютерные шины ранних вычислительных машин представляли собой жгуты (пучки соединительных проводов — сигнальных и питания, для компактности и удобства обслуживания увязанных вместе), реализующие параллельные электрические шины с несколькими подключениями. В современных вычислительных системах данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины.

Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (англ. multidrop) и цепные (англ. daisy chain) топологии. В случае USB и некоторых других шин могут также использоваться хабы (концентраторы).

Некоторые виды скоростных шин (Fibre Channel, InfiniBand, скоростной Ethernet, SDH) для передачи сигналов используют не электрические соединения, а оптические.

Присоединители к шине, разнообразные разъёмы, как правило, унифицированы и позволяют подключить различные устройства к шине.

Управление передачей по шине реализуется как на уровне прохождения сигнала (мультиплексоры, демультиплексоры, буферы, регистры, шинные формирователи), так и со стороны ядра операционной системы — в таком случае в его состав входит соответствующий драйвер.

Описание шин[править | править код]

Шины бывают параллельными (данные переносятся потактово словами: каждый бит — отдельным проводником) и последовательными (биты данных переносятся поочерёдно по каналу, например, паре проводников).

Большинство компьютеров имеет как внутренние, так и внешние шины. Внутренняя шина подключает все внутренние компоненты компьютера к материнской плате (и, следовательно, к процессору и памяти). Такой тип шин также называют локальной шиной, поскольку она служит для подключения локальных устройств. Внешняя шина подключает внешнюю периферию к материнской плате.

Сетевые соединения, такие, как Ethernet, обычно не рассматриваются как шины, хотя разница больше концептуальная, чем практическая. Появление технологий InfiniBand и HyperTransport ещё больше размыло границу между сетями и шинами.[1]

История[править | править код]

Первое поколение[править | править код]

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разными способами доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять код только для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

DEC отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров, и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением, и критики предсказывали ему провал.

Первые мини-компьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например, в IBM PC, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.

Во многих микроконтроллерах и встраиваемых системах шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска уведомит процессор о готовых для чтения данных, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair с шиной S-100, заканчивая IBM PC в 1980‑х.

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было непростым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение[править | править код]

Компьютерные шины «второго поколения», например, NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-битных шин первого поколения до 16- или 32-битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же, как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине, и их скорость росла быстрее, чем скорость периферийной шины. В результате шины были слишком медленны для новых систем, и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин Peripheral Component Interconnect (PCI). Компьютеры стали включать в себя Accelerated Graphics Port (AGP) только для работы с видеоадаптерами. В 2004 году AGP снова стало недостаточно быстрым для мощных видеокарт, и AGP стал замещаться новой шиной PCI Express.

Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980‑х и 1990‑х были изобретены новые шины SCSI и IDE, решившие эту проблему, оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.

Шины стали разделять на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких, как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.

Третье поколение[править | править код]

Шины «третьего поколения» (например, PCI-Express) обычно позволяют использовать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие при работе с медленными устройствами, например, приводами дисков. Также они стремятся к большей гибкости в терминах физических подключений, позволяя использовать себя и как внутренние, и как внешние шины, например, для объединения компьютеров. Это приводит к сложным проблемам при удовлетворении различных требований, так что большая часть работ по данным шинам связана с программным обеспечением, а не с самой аппаратурой. В общем, шины третьего поколения больше похожи на компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.

Современные интегральные схемы часто разрабатываются из заранее созданных частей. Разработаны шины (например, Wishbone) для более простой интеграции различных частей интегральных схем.

Топологии шин[править | править код]

Примеры внутренних компьютерных шин[править | править код]

что такое шины в компьютере
Список примеров в этом разделе не основывается на авторитетных источниках, посвящённых непосредственно предмету статьи или её раздела.

Добавьте

ссылки на источники

, предметом рассмотрения которых является тема настоящей статьи (или раздела) в целом, а не отдельные элементы списка. В противном случае раздел может быть удалён.

Параллельные[править | править код]

  • Проприетарная Asus Media Bus[en], использовалась на некоторых материнских платах ASUS с Socket 7 и представляла собой шину ISA в специфическом разъеме, размещенном в одну линию с разъемом шины PCI.
  • CAMAC для измерительных систем (instrumentation systems)
  • Extended ISA или EISA
  • Industry Standard Architecture или ISA
  • Low Pin Count или LPC
  • MicroChannel или MCA
  • MBus
  • Multibus для промышленных систем
  • NuBus или IEEE 1196
  • OPTi local bus, использовалась для ранних материнских плат для Intel 80486
  • Peripheral Component Interconnect или PCI, также PCI-X
  • S-100 bus или IEEE 696, использовалась в Altair и похожих микрокомпьютерах
  • SBus или IEEE 1496
  • VESA Local Bus или VLB или VL-bus, использовалась в основном на материнских платах для 80486 процессоров и была подключена непосредственно к выводам микропроцессора. Однако встречалась и реализация этой шины в сочетании с ЦПУ IBM BL3 (аналог i386SX) и ранними Pentium
  • VMEbus, VERSAmodule Eurocard bus
  • STD Bus для 8- и 16-битных микропроцессорных систем
  • Unibus
  • Q-Bus

Последовательные[править | править код]

Примеры внешних компьютерных шин[править | править код]

  • Advanced Technology Attachment или ATA (также известна как PATA, IDE, EIDE, ATAPI) — шина для подключения дисковой и ленточной периферии.
  • SATA, Serial ATA — современный вариант ATA
  • USB, Universal Serial Bus, используется для множества внешних устройств
  • HIPPI, HIgh Performance Parallel Interface
  • IEEE-488, GPIB (General-Purpose Instrumentation Bus), HPIB, (Hewlett-Packard Instrumentation Bus)
  • PC card, ранее известная как PCMCIA, часто используется в ноутбуках и других портативных компьютерах, но теряет своё значение с появлением USB и встраиванием сетевых карт и модемов
  • SCSI, Small Computer System Interface, шина для подключения дисковых и ленточных накопителей
  • Serial Attached SCSI, SAS — современный вариант SCSI

Примеры универсальных компьютерных шин[править | править код]

См. также[править | править код]

Примечания[править | править код]

  1. Ещё больше запутывает ситуацию, что в топологии локальных сетей также используется понятие шин: как логических, так и физической среды.

Ссылки[править | править код]

Системные шины :: Интересное :: ColoCAT

Системные шины

FSB

Front Side Bus (FSB) — это магистральный канал, обеспечивающий соединение процессора и внутренних устройств: памяти, видеокарты, устройств хранения информации и т. п.

Наиболее часто можно встретить систему организации внешнего интерфейса процессора, которая предполагает, что параллельная мультиплексированная процессорная шина, носящая название FSB, соединяет процессор (порой два процессора, четыре или даже больше) и системный контроллер, который обеспечивает доступ к оперативной памяти и внешним устройствам. Этот системный контроллер обычно называется «северным мостом» (от англ. Northbridge). Он, наряду с «южным мостом» (от англ. Southbridge), входит в состав набора системной логики, который, однако, чаще фигурирует под названием «чипсет» (от англ. Chipset).

Northbridge

Северный мост начал именоваться именно так из-за своего расположения на материнской плате. Он представляет собой микрочип, визуально расположенный «под» процессором, однако в верхней части материнской платы, как бы в «северной» ее части.

Системный контроллер служит для передачи команд центрального процессора к оперативной памяти, и видеоконтроллеру (в случае встроенного видеоконтроллера, северный мост, производимый компанией Intel, именуется GMCH (от англ. Chipset Graphics and Memory Controller Hub), а также конвертацию этих команд в форму, необходимую для обращения к оперативной памяти. Порой, для увеличения потенциальной производительности системы, к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express, а менее производительные устройства (BIOS, устройства PCI, интерфейсы устройств хранения информации, ввода и т. п.) могут подключаться к так называемому южному мосту. Северный мост соединен с материнской платой посредством согласующего интерфейса, также контроллер соединяется шиной и с южным мостом.

Северным мостом определяются параметры (пропускная способность, частота, а также тип): системной шины, оперативной памяти (тип используемой памяти, а также ее максимальный объем), подключенного видеоконтроллера (режим работы, возможность использования SLI (от англ. Scalable Link Interface, что означает «масштабируемый интерфейс» и фактически означает возможность работы 2 (3 — 3-Way SLI, или даже 4 — Quad SLI) видеоадаптеров одновременно, что чрезвычайно повышает производительность видео).

В настоящее время в процессорах серии Core i-x с разъемом LGA 1156 северный мост встроен в процессор и связывается с ядрами по внутренней шине QPI со скоростью соединения 2.5^109 операций в секунду. Из факта поглощения процессором северного моста вытекает неактуальность использования шины FSB и внешней шины QPI в подобных системах.

Southbridge

Еще одним компонентом чипсета является функциональный контроллер ввода-вывода (от англ. I/O Controller Hub, ICH), так называемый южный мост, служащий для связи центрального процессора (через северный мост) с устройствами, не столь критичными к скорости взаимодействия:

  • Контроллеры PCI (X, E), прерываний, SMBus (I2C), LPC, IDE/SATA DMA, IRQ, ISA;

  • Super I/O: контроллер floppy-дисководов; контроллер LPT-порта; Контроллер COM-портов; MIDI, джойстик, инфракрасный порт и т.п.

  • Часы реального времени RTC (от англ. Real Time Clock);

  • BIOS (CMOS), вместе с энергонезависимыми системами обеспечения;

  • Системы энергообеспечения APM и ACPI;

  • Звуковой контроллер (AC97);

  • Может включать в себя контроллеры Ethernet, USB, RAID, FireWire и т. п.

  • Особенностью южного моста является его взаимодействие с внешними устройствами. Как следствие, он довольно чувствителен различным негативным факторам, влияющим на нормальную работу устройств (короткое замыкание, перегрев, деформация материнской платы и т. п.). Замена южного моста, как правило, составляет стоимость самой материнской платы, поэтому замена его нерациональна из-за ее высокой стоимости и обычно не проводится.

    BSB

    Шина BSB (от англ. Back Side Bus) служит для соединения центрального процессора с кэш-памятью второго уровня для процессоров, в которых используется двойная независимая шина DIB (от англ. Dual Independent Bus), которая также называется вторичным (или внешним) КЭШем (и носит обозначение L2-cache).

    QPB

    Компанией Intel была разработана системная шина QPB (от англ. Quad Pumped Bus), передающая 4 64-разрядных блока данных или 2 адреса за такт, тогда как пытавшаяся получить лицензию на системную шину GTL+ для создания своих новых процессоров, компания AMD вынуждена была при создании процессоров серии К7 лицензировать шину EV6 для процессоров AMD Athlon и Athlon XP передающую данные два раза за такт (Double Data Rate).

    Данная шина оказалась значительно сложнее в производстве, чем предыдущие исполнения. Данное обстоятельство не могло не сказаться на серьезном увеличении количества транзисторов, используемых для реализации вышеуказанного принципа передачи данных, как для процессора, так и для самого чипсета.

    DMI

    DMI (от англ. Direct Media Interface) – шина, которая была разработана компанией Intel, для соединения южного и северного мостов материнской платы. Для разъема LGA 1156 со встроенным контроллером памяти (продукты Core i3, Core i5 и некоторые серии Core i7 (800, к примеру)), DMI соединяет процессор и чипсет PCH (от англ. Platform Controller Hub) по технологии CtC (от англ. Chip-to-Chip).

    PCH является, по сути, аналогом южного моста, однако представляет из себя совершенно новый P55 Ibex Peak. Фактически, в новом решении сочетается расширенный функционал предыдущих версий южных мостов компании Intel, а также дополнительный контроллер PCI-e для периферии.

    Первыми чипсетами, построенными с помощью технологии DMI, были устройства серии Intel i915, на основе сокета LGA 1156, получившие свое распространение с 2004 года.

    Пропускная способность DMI составляет 2 Гбайт/с. Из-за столь невысоких значений, инженеры Intel пошли на революционное решение, встроив контроллер памяти, PCI-e и непосредственно интерфейс DMI в сам процессор.

    HyperTransport

    HyperTransport (ранее известная, как Lightning Data Transport) – технология последовательной/параллельной связи, разработанная с использованием технологии P2P (от англ. «point-to-point»), которая обеспечивает достаточно высокую скорость при низком уровне латентности (от англ. Low-latency responses), которая обеспечивает межпроцессорную связь, связь процессоров с сопроцессорами и процессоры с I/O Controller Hub. Имеет оригинальную схему на основе соединений, тоннелей, последовательного объединения нескольких тоннелей в цепь и мостов (для организации маршрутизации пакетов между цепями) для более простого масштабирования всей системы.

    HyperTransport оптимизирует внутрисистемные связи заменой шин и мостов на их физическом уровне. Также тут используется DDR (от англ. Double Data Rate), что позволяет производить до 5.2x109 посылок в секунду с частотой синхронизации сигнала на уровне 2.6 гигагерц.

    Версии HyperTransport:

    Версия Год Максимальная частота (МГц) Максимальная ширина (бит) Пиковая пропускная способность (Гбайт/сек)
    1.0 2001 800 32 12.8
    1.1 2002 800 32 12.8
    2.0 2004 1400 32 22.4
    3.0 2006 2600 32 41.6
    3.1 2008 3200 32 51.6

    QPI

    Очередной шаг в совершенствовании научно-технического процесса был обозначен инженерами компании Intel созданием нового типа системной шины QPI (от англ. Quick Path Interconnect, ранее известной, как Common-System Interface, или CSI). Она заключается в интегрированном контроллере памяти и быстрой последовательной шины P2P для доступа к распределенной и разделяемой памяти.

    Необходимость повышения скорости обработки и обмена данными диктует более жесткие требования к пропускной способности шины. С развитием технологии и характеристик процессоров нового поколения, использование FSB уже неактуально и в полной мере является наглядным изображением пресловутого эффекта «бутылочного горлышка». Результатом модернизации технологии FSB было создание шины нового поколения – QPI. Общая пропускная способность данного нового вида системной шины достигает невероятных (для предшественников) значений в 25.6 ГБ/с.

    Первые процессоры, построенные на технологии использования системной шины QPI, поступили на рынок в начале 2008 года. Данная технология является прямым конкурентом консорциума, во главе с компанией AMD, выпустившей системную шину HyperTransport.

    Название микроструктуры процессорного ряда компании Intel - Nehalem произошло от названия небольшого города в США неподалеку от головного офиса компании Intel в г. Санта-Клара (основанного в 18 веке) в Калифорнии. Nehalem является продолжением процесса модернизации модельного ряда архитектур Intel x86. Свое продолжение в 2010 году QPI получила в процессоре серии Itanium 9300, получив кодовое имя Tukwila, что является большим шагом вперед для систем, построенных на базе Itanium. Вместе с QuickPath в процессоре используется встроенный контроллер памяти, и интерфейс памяти прямо использует интерфейс QPI для взаимодействия с другими процессорами и I/OCH. Именно в этих продуктах наиболее типичным решением и стала системная шина QPI, что делает вероятной возможность использования одного чипсета процессорами Tukwila и Nehalem.

    Каждое ядро процессора содержит интегрированный контроллер памяти и скоростное соединение для подключения иных компонентов. Данная структура служит для обеспечения следующих аспектов:

  • Огромной производительности и удобства работы с памятью;

  • Динамически изменяемой полосы эффективного пропускания при связи процессора с иными компонентами системы;

  • Значительного увеличения характеристик RAS (от англ. Reliability, Availability, Serviceability, что дословно означает «надежность, доступность и обслуживаемость») - достигается для достижения наилучшего баланса между ценой, производительностью и энергоэффективностью.

    Чипсеты с разъемом LGA 1366 используют шину DMI для связи между северным мостом и южным мостом. А процессоры для сокета LGA 1156 вообще не имеют внешнего интерфейса QuickPath, т.к. чипсеты для данного сокета взаимодействуют с однопроцессорными конфигурациями, а функционал северного моста же напрямую встроен в сам процессор, что заставляет использовать шину DMI для связи процессора с аналогом южного моста. Однако, встроенная шина QPI используется в процессорах сокета LGA 1156 для связи ядер и встроенного контроллера PCI-e внутри самого процессора.

    Данные, передаваемые в виде датаграмм (пакетов) в системной шине QPI передаются по паре односторонних каналов, каждый из которых состоит из 20 пар проводов. Общая ширина канала составляет 20 бит, при этом 16 бит служат для передачи исключительно данных (полезной нагрузки). Максимальная пропускная способность одного канала варьируется от 4.8^109 до 6.4^109 транзакций в секунду, следовательно, общая максимальная пропускная способность одного соединения приближается к значениям от 19.2 до 25.6 ГБ/с в двух направлениях, что составляет, соответственно, от 9.6 до 12.8 ГБ/с в каждую сторону.

    В настоящее время системную шину QPI используют, в основном, для серверных решений. Связано это обстоятельство с тем, что QPI приобретает максимальную эффективность (и КПД) именно в загруженности пересылкой данных в оба направления, как в случае с многосокетными рабочими станциями или, собственно, серверами.

    Как показывают тесты, для пользовательских машин использовать решения на основе QPI нецелесообразно, так как даже намеренное снижение пропускной способности QPI в 2 раза никоим образом не влияет на получаемые результаты в тестах, даже при условии использования связки из 3 наиболее производительных графических адаптеров.

    PCI

    PCI (от англ. Peripheral Component Interconnect bus) – шина для соединения материнской платы с периферийными устройствами различного рода.

    Начало PCI было положено в начале 1992 года компанией Intel (для замены шины VLB (от англ. Vesa Local Bus)), которая допустила полноценное использование возможностей процессоров 486, Pentium и Pentium Pro, при этом стандарт шины с самого начала был открыт, что гарантировало возможность создания устройств для шины PCI без обязательства лицензирования.

    В 1993 году в ходе маркетинговой политики по продвижению PCI на рынке вышла PCI 2.0. В 1995 году данная модель модифицировалась до версии PCI 2.1.

    PCI имела реальную тактовую частоту на уровне 33 МГц, тактовой частотой для версии 2.1 стало значение в 66 МГц, что позволило повысить скорость передачи данных до 533 Мбайт/с. Вместе с тем, и в операционных системах (Windows 95, к примеру) уже была предусмотрена поддержка шины PCI 2.1, которая стала настолько популярной, что вскоре была использована при создании платформ процессоров Alpha, MIPS, PowerPC, SPARC и т.д.

    Однако, ничего не стоит на месте, включая научно-технический процесс, поэтому в связи с разработкой шины PCI Express, AGP и PCI практически не используются в решениях высшего ценового диапазона.

    PCI Express

    PCI Express получила свое кодовое название 3GIO (от англ. 3rd Generation I/O) – компьютерная шина, использующая последовательную передачу данных, обеспечиваемую высокопроизводительным физическим протоколом на основе программной модели шины PCI.

    В связи с тем, что использование параллельной передачи данных, при попытке увеличить производительность, будет означать физическое ее расширение, последовательная передача данных обладает возможностью масштабирования (1x, 2x, 4x, 8x, 16x и 32x) а, значит, более приоритетна в разработке. Топология PCI Express, в общем случае, представляет собой звезду со взаимодействием между собой устройств через среду, образованную коммутаторами, с прямой связью каждого устройства соединением P2P.

    Очередными отличительными особенностями PCI Express являются:

  • Возможность горячей замены карт;

  • Последовательность;

  • Спецификация;

  • Возможность создания виртуальных каналов, гарантирования полосы пропускания и количество времени отклика, а также сбора статистики QoS (от англ. Quality of Service)

  • Возможность влиять на энергопотребление оборудования ASMP (от англ. Active State Power Management) – перевод устройства в режим уменьшенного энергопотребления в случае его простоя в течение конкретного (задаваемого программно) интервала времени;

  • Контроль целостности информации и структуры данных, предназначенных для передачи – алгоритм Data Link прикрепляет к пакету данных (в передаче) контрольную сумму последовательности и ее номер, что позволяет обнаруживать все одиночные и двойные ошибки, а также ошибки в нечетном числе бит – CRC (от англ. Cyclic Redundancy Check).

  • В отличие от PCI (использование подключения к общей 32-разрядной параллельной двунаправленной шине), PCI Express использует двунаправленное последовательной соединение P2P, а соединение между двумя устройствами состоит из 1 (2, 4, 8, 16, 32) двунаправленных линий. На электрическом уровне каждое соединение способно подключаться к PCI Express всего лишь 4 проводниками.

    Преимущества подобного решения налицо:

  • Устройство корректно работает в таком же слоте, или большей пропускной способности;

  • Корректная работа слота возможна даже при использовании не всех линий (однако в таком случае необходимо подключение и заземление всех проводников питания);

  • Физическая составляющая слота не позволит допустить некорректную работу системы, в случае попытки вставить устройство в слот с меньшей пропускной способностью, дифференциацией размеров слотов x1 (x2, x4, x8, x16, x32).

  • Чтобы высчитать пропускную способность PCI Express, нужно учесть битрейт, дуплексность связи и процент (отношение) эффективного количества «полезной нагрузки» бит к общему количеству (в PCI Express 1.0 и 2.x это отношение выглядело, как 8 бит информации / 10 бит служебных данных). Перемножая все три значения, получим скорость передачи данных. Так общая пропускная способность шины PCI Express 3.0 достигает 1 Гбайт/с для каждой линии при сигнальной скорости передачи данных в 8 GT/s (для 2.0 этот показатель был равен 5 GT/s, а для 1.0 – вообще 2.5 GT/s). А для планируемого к стандартизации и спецификации к 2014-2015 гг. стандарта 4.0 планируется удвоить показатель сигнальной скорости до 16 GT/s или даже более, что будет, по-меньшей мере, в 2 раза быстрее PCI Express 3.0

    Заключение.

    В настоящее время развитие технологий дает потребителям возможность выбирать технологию себе по вкусу из огромного количества вариантов. Решение различного рода задач потребителей задает необходимость определяться с наилучшим соотношением «цена-качество-целесообразность». К примеру: обыватель не замечает разницы в производительности между системами, построенных на базе сокета LGA 1366 (используется системная шина QPI) и сокета LGA 1156(1155) (используется системная шина DMI) в силу достаточности технологии, связанной с LGA 1156 и отсутствием задач, для которых ресурс данной системы был бы недостаточен. Лишь настоящие ценители и коллекционеры не откажут себе в радости приобретения компьютера, ресурс которого не будет использован и на 50%. Для потребителей-корпораций и крупных фирм нередко уже недостаточно производительности шины DMI.

    Разрыв в разнице задач растет соответственно уровню потребителя. Кто знает, какие технологии используются в суперкомпьютерах мировых держав, однако ясно одно: именно эти технологии мы и будем использовать в ближайшем будущем.

    Мамонов Дмитрий.

    СИСТЕМНАЯ ШИНА - это... Что такое СИСТЕМНАЯ ШИНА?

    СИСТЕМНАЯ ШИНА
    СИСТЕМНАЯ ШИНА

    СИСТЕМНАЯ ШИНА (system bus), совокупность линий передачи всех видов сигналов (в том числе данных, адресов и управления) между микропроцессором

    (см. МИКРОПРОЦЕССОР)

    и остальными электронными устройствами компьютера

    (см. КОМПЬЮТЕР)

    . Часть системной шины, передающая данные, называется шиной данных, адреса — адресной шиной, управляющие сигналы — шиной управления. Важной характеристикой системной шины, влияющей на производительность персонального компьютера, является тактовая частота системной шины — FSB (Frequency System Bus).

    Персональный компьютер на базе x86-совместимого микропроцессора построен по следующей схеме: микропроцессор через системную шину подключается к системному контроллеру (обычно такой контроллер называют «северным мостом» — North Bridge). Системный контроллер включает в себя контроллер оперативной памяти и контроллеры шин, к которым подключаются периферийные устройства. К северному мосту обычно подключают наиболее производительные периферийные устройства (например, видеокарты

    (см. ВИДЕОАДАПТЕР)

    ), а менее производительные устройства (микросхема BIOS, устройства с шиной PCI) подключаются к «южному мосту» (South Bridge), который соединяется с северным мостом специальной высокопроизводительной шиной. Набор из «южного» и «северного» мостов называют чипсетом

    (см. ЧИПСЕТ)

    (chipset). Системная шина работает в качестве магистрального канала между процессором и чипсетом.

    Энциклопедический словарь. 2009.

    Смотреть что такое "СИСТЕМНАЯ ШИНА" в других словарях:

    • системная шина — магистраль системного блока ПЭВМ — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом Синонимы магистраль системного блока ПЭВМ EN system busS bus …   Справочник технического переводчика

    • Системная шина — …   Википедия

    • шина EISA — расширенная архитектура промышленного стандарта Системная шина ПК, расширившая возможности шины ISA с 16 ти до 32 х разрядов. Была быстро вытеснена шиной PCI. [http://www.morepc.ru/dict/] Тематики информационные технологии в целом Синонимы… …   Справочник технического переводчика

    • шина канала ввода-вывода (ЭВМ) — Локальная системная шина процессора, обычно используемая в качестве канала ввода вывода системной платы однопроцессорного компьютера, например, в IBM PC XT, Apple Mac II, DEC Professional 325/350/380. [Е.С.Алексеев, А.А.Мячев. Англо русский… …   Справочник технического переводчика

    • Шина (компьютеры) — Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32 битным разъемом шины Компьютерная шина (от англ. computer bus, bidirectional universal switch двунаправленный универсальный коммутатор) в архитектуре компьютера… …   Википедия

    • Шина AGP — Разъём AGP на материнской плате (обычно коричневого или зелёного цветов). AGP (от англ. Accelerated Graphics Port, ускоренный графический порт)  разработанная в 1997 году компанией системная шина для видеокарты. Появилась одновременно с чипсетами …   Википедия

    • шина ПЭВМ с расширенной технологией — Системная магистраль, разработанная фирмой IBM, используется в серии IBM PC XT на основе микропроцессора 8088 с 8 разрядной шиной данных. Магистраль содержит 20 разрядную шину 8 разрядную двунаправленную шину данных, 6 линий уровня прерывания,… …   Справочник технического переводчика

    • S-100 (шина данных) — S 100 Универсальная интерфейсная шина спроектированная компанией MITS в 1974 году специально для Altair 8800, считающимся на сегодняшний день первым персональным компьютером. Шина S 100 была первой интерфейсной шиной для микрокомпьютерной… …   Википедия

    • Компьютерная шина — Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32 битным разъемом шины Компьютерная шина (от англ. computer bus, bidirectional universal switch двунаправленный универсальный коммутатор) в архитектуре компьютера… …   Википедия

    • Процессорная шина — FSB (англ. Front side bus, переводится как «системная шина») компьютерная шина, обеспечивающая соединение между x86 совместимым центральным процессором и внешним миром. Как правило, современный персональный компьютер на базе x86 совместимого… …   Википедия

    Системные шины — Студопедия

    По системным шинам осуществляется передача информации (по шине данных), адресация устройств (по шине адреса) и обмен специальными служебными сигналами (по шине управления). Основной функцией системной шины является обмен информацией между процессором и остальными электронными компонентами компьютера.

    Перемещение информации между оперативной памятью и процессором и между оперативной памятью и портами происходит по системе соединений, которые называются шиной данных. Для увеличения скорости передачи биты информации передаются одновременно по нескольким линиям шины. Количество линий называется разрядностью шины. В современных персональных компьютерах используется 64-разрядная шина данных, по ней можно передавать 8 байтов данных одновременно.

    Для правильной организации работы компьютера процессор и память должны обмениваться не только данными, но и управляющими сигналами. Для этого в компьютере предусмотрены, кроме шины данных, еще две шины: шина адреса и шина управления (на самом деле есть еще шина питания, по которой на все устройства компьютера подается питание).

    1. Как уже отмечалось, шина адреса нужна для того, чтобы локализовать те ячейки оперативной памяти или те порты ввода-вывода, которые должны непосредственно участвовать в операции. Все байты оперативной памяти перенумерованы числами от нуля до максимального номера байта (последний зависит от объема оперативной памяти). Аналогично перенумерованы также все порты ввода-вывода (обычно от 0 до 65 535). Адресом байта оперативной памяти называется его номер. Адресом участка памяти, состоящего из нескольких последовательных байтов (области памяти), служит адрес начального байта. Адресом порта ввода-вывода также называется его номер. При выполнении машинной команды адрес байта оперативной памяти, содержимое которого должно участвовать в операции, посылается процессором по шине адреса. При прохождении адреса по шине адреса активизируется именно байт памяти с указанным адресом. Остальные управляющие сигналы, необходимые для правильного выполнения операции, посылаются по шине управления.


    Для характеристики компьютера очень важна разрядность шины адреса. Например, у прежних персональных компьютеров использовалась 20-разрядная шина адреса. Максимальный адрес, который можно послать по такой шине, равен 220 - 1 = 1Мб, поэтому байту оперативной памяти с адресом, большим 1 Мб, предписание по шине адреса отправить, в принципе, невозможно. В таких компьютерах объем оперативной памяти принципиально не мог быть больше 1 Мб. В процессорах этих компьютеров использовалась специальная система определения адреса, ориентированная на такое ограничение.


    Современные персональные компьютеры включают 32-разрядную шину адреса. При такой шине максимальный объем оперативной памяти равен 232= 4 Гб. Пока этого достаточно, но уже существуют компьютеры с 64-разрядной шиной адреса. При 32-разрядной шине можно обратиться к любому байту оперативной памяти в пределах 4 Гб. В новых программах используется эта возможность. Однако необходимо предусмотреть возможность выполнения программ, написанных для старых процессоров. Поэтому в современных процессорах предусмотрены два режима работы: один режим, называемый реальным, имитирует работу старых процессоров, и в этом режиме осуществляется доступ только к 1 Мб оперативной памяти; другой режим, называемый защищенным, имеет доступ ко всей оперативной памяти.

    2. По шине управления идут сигналы, которые выполняют различные вспомогательные функции, необходимые для правильного выполнения операций. Всего в шине управления может быть более 100 линий. Перечислим только некоторые из них. Существует линия переключения между оперативной памятью и портами ввода-вывода. Дело в том, что когда по шине адреса идет сигнал, то он может восприниматься и как адрес байта оперативной памяти, и как адрес порта ввода-вывода. Как именно воспринимать этот адрес, зависит от сигнала, который одновременно с адресом идет по управляющей линии (например, ноль на управляющей линии обозначает оперативную память, единица — порт). По другой управляющей линии идет сигнал, который задает направление перемещения информации (ноль — информация читается из памяти или из порта в регистр процессора, единица — пишется из регистра в память или порт). По третьей управляющей линии передаются сигналы от тактового генератора. Эти сигналы позволяют синхронизировать операции, которые должны одновременно выполняться сразу несколькими устройствами компьютера (например, подготовиться к очередной операции).


    системные шины

    Архитектура системной шины определяется типом процессора, применяемым набором микросхем, количеством и разрядностью периферийных устройств, подключаемых к шине. Так, системные шины платформы Pentium (PCI)обеспечивают обмен центрального процессора с оперативной памятью 64 разрядами данных, при этом адресация данных осуществляется 32-разрядным адресом. Часто используется в качестве критерия сравнения возможностей шин различной архитектуры максимальная пропускная способность шины. Ее можно рассчитать, умножив рабочую частоту шины на количество байтов, передающихся в одном такте (ширину полосы пропускания). Например, системная шина PCI процессора Pentium имеет пропускную способность 533 Мб/с

    Если процессор имеет тактовую частоту выше частоты системной шины и/или способен исполнять несколько инструкций в одном такте, он может полностью использовать пропускную способность шины. Если тактовая частота процессора ниже, чем у шины, то это приводит к задержкам, существенно снижающим производительность процессора. Для увеличения пропускной способности требуется увеличить либо тактовую частоту, либо разрядность шины данных.

    301 Moved Permanently

    The document has moved here.

    =====================================

    купить шины wingro

    расчет веса медной шины

    шины 16.00r20 цена

    запчасти на пылесосы lg

    запчасти т40 винница

    husqvarna 254 запчасти

    шины apollo отзывы

    запчасти к шлифмашине бош

    зимние шины nokian nordman rs отзывы

    cpi sm 250 запчасти

    драйвер на контроллер универсальной последовательной шины usb

    купить шины r15 киев

    шины lassa snoways 3 отзывы

    запчасти таврия купить киев

    запчасти на мобильный телефон

    какие шины лучше для микроавтобуса

    toyota camry 50 шины

    запчасти для стиральных машин samsung одесса

    запчасти для ранцевого опрыскивателя

    купить авто шины в украине

    купить бу шины 235 55 r17

    зимние шины белшина 205/60 r16

    honda ns 50 запчасти

    https://taksiua.com/sitemap.xml https://taksiua.com/sitemap-0.xml https://taksiua.com/sitemap-1.xml https://taksiua.com/sitemap-2.xml https://taksiua.com/sitemap-3.xml https://taksiua.com/sitemap-4.xml https://taksiua.com/sitemap-5.xml https://taksiua.com/sitemap-6.xml https://taksiua.com/sitemap-7.xml https://taksiua.com/sitemap-8.xml https://taksiua.com/sitemap-9.xml https://taksiua.com/sitemap-10.xml