May 6, 2021
Favbet Bonus =====================================

Шина (компьютер) — Википедия

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 29 мая 2020; проверки требуют

2 правки

.

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 29 мая 2020; проверки требуют

2 правки

.

что такое шины в компьютере

У этого термина существуют и другие значения, см.

Шина

.

Компьютерная ши́на (англ. computer bus) в архитектуре компьютера — соединение, служащее для передачи данных между функциональными блоками компьютера. В устройстве шины можно различить механический, электрический (физический) и логический (управляющий) уровни.

В отличие от соединения точка-точка, к шине обычно можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор разъёмов (соединений) для физического подключения устройств, карт и кабелей.

Компьютерные шины ранних вычислительных машин представляли собой жгуты (пучки соединительных проводов — сигнальных и питания, для компактности и удобства обслуживания увязанных вместе), реализующие параллельные электрические шины с несколькими подключениями. В современных вычислительных системах данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины.

Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (англ. multidrop) и цепные (англ. daisy chain) топологии. В случае USB и некоторых других шин могут также использоваться хабы (концентраторы).

Некоторые виды скоростных шин (Fibre Channel, InfiniBand, скоростной Ethernet, SDH) для передачи сигналов используют не электрические соединения, а оптические.

Присоединители к шине, разнообразные разъёмы, как правило, унифицированы и позволяют подключить различные устройства к шине.

Управление передачей по шине реализуется как на уровне прохождения сигнала (мультиплексоры, демультиплексоры, буферы, регистры, шинные формирователи), так и со стороны ядра операционной системы — в таком случае в его состав входит соответствующий драйвер.

Описание шин[править | править код]

Шины бывают параллельными (данные переносятся потактово словами: каждый бит — отдельным проводником) и последовательными (биты данных переносятся поочерёдно по каналу, например, паре проводников).

Большинство компьютеров имеет как внутренние, так и внешние шины. Внутренняя шина подключает все внутренние компоненты компьютера к материнской плате (и, следовательно, к процессору и памяти). Такой тип шин также называют локальной шиной, поскольку она служит для подключения локальных устройств. Внешняя шина подключает внешнюю периферию к материнской плате.

Сетевые соединения, такие, как Ethernet, обычно не рассматриваются как шины, хотя разница больше концептуальная, чем практическая. Появление технологий InfiniBand и HyperTransport ещё больше размыло границу между сетями и шинами.[1]

История[править | править код]

Первое поколение[править | править код]

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разными способами доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять код только для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

DEC отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров, и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением, и критики предсказывали ему провал.

Первые мини-компьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например, в IBM PC, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.

Во многих микроконтроллерах и встраиваемых системах шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска уведомит процессор о готовых для чтения данных, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair с шиной S-100, заканчивая IBM PC в 1980‑х.

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было непростым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение[править | править код]

Компьютерные шины «второго поколения», например, NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-битных шин первого поколения до 16- или 32-битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же, как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине, и их скорость росла быстрее, чем скорость периферийной шины. В результате шины были слишком медленны для новых систем, и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин Peripheral Component Interconnect (PCI). Компьютеры стали включать в себя Accelerated Graphics Port (AGP) только для работы с видеоадаптерами. В 2004 году AGP снова стало недостаточно быстрым для мощных видеокарт, и AGP стал замещаться новой шиной PCI Express.

Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980‑х и 1990‑х были изобретены новые шины SCSI и IDE, решившие эту проблему, оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.

Шины стали разделять на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких, как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.

Третье поколение[править | править код]

Шины «третьего поколения» (например, PCI-Express) обычно позволяют использовать как большие скорости, необходимые для памяти, видеокарт и межпроцессорного взаимодействия, так и небольшие при работе с медленными устройствами, например, приводами дисков. Также они стремятся к большей гибкости в терминах физических подключений, позволяя использовать себя и как внутренние, и как внешние шины, например, для объединения компьютеров. Это приводит к сложным проблемам при удовлетворении различных требований, так что большая часть работ по данным шинам связана с программным обеспечением, а не с самой аппаратурой. В общем, шины третьего поколения больше похожи на компьютерные сети, чем на изначальные идеи шин, с большими накладными расходами, чем у ранних систем. Также они позволяют использовать шину нескольким устройствам одновременно.

Современные интегральные схемы часто разрабатываются из заранее созданных частей. Разработаны шины (например, Wishbone) для более простой интеграции различных частей интегральных схем.

Топологии шин[править | править код]

Примеры внутренних компьютерных шин[править | править код]

что такое шины в компьютере
Список примеров в этом разделе не основывается на авторитетных источниках, посвящённых непосредственно предмету статьи или её раздела.

Добавьте

ссылки на источники

, предметом рассмотрения которых является тема настоящей статьи (или раздела) в целом, а не отдельные элементы списка. В противном случае раздел может быть удалён.

Параллельные[править | править код]

  • Проприетарная Asus Media Bus[en], использовалась на некоторых материнских платах ASUS с Socket 7 и представляла собой шину ISA в специфическом разъеме, размещенном в одну линию с разъемом шины PCI.
  • CAMAC для измерительных систем (instrumentation systems)
  • Extended ISA или EISA
  • Industry Standard Architecture или ISA
  • Low Pin Count или LPC
  • MicroChannel или MCA
  • MBus
  • Multibus для промышленных систем
  • NuBus или IEEE 1196
  • OPTi local bus, использовалась для ранних материнских плат для Intel 80486
  • Peripheral Component Interconnect или PCI, также PCI-X
  • S-100 bus или IEEE 696, использовалась в Altair и похожих микрокомпьютерах
  • SBus или IEEE 1496
  • VESA Local Bus или VLB или VL-bus, использовалась в основном на материнских платах для 80486 процессоров и была подключена непосредственно к выводам микропроцессора. Однако встречалась и реализация этой шины в сочетании с ЦПУ IBM BL3 (аналог i386SX) и ранними Pentium
  • VMEbus, VERSAmodule Eurocard bus
  • STD Bus для 8- и 16-битных микропроцессорных систем
  • Unibus
  • Q-Bus

Последовательные[править | править код]

Примеры внешних компьютерных шин[править | править код]

  • Advanced Technology Attachment или ATA (также известна как PATA, IDE, EIDE, ATAPI) — шина для подключения дисковой и ленточной периферии.
  • SATA, Serial ATA — современный вариант ATA
  • USB, Universal Serial Bus, используется для множества внешних устройств
  • HIPPI, HIgh Performance Parallel Interface
  • IEEE-488, GPIB (General-Purpose Instrumentation Bus), HPIB, (Hewlett-Packard Instrumentation Bus)
  • PC card, ранее известная как PCMCIA, часто используется в ноутбуках и других портативных компьютерах, но теряет своё значение с появлением USB и встраиванием сетевых карт и модемов
  • SCSI, Small Computer System Interface, шина для подключения дисковых и ленточных накопителей
  • Serial Attached SCSI, SAS — современный вариант SCSI

Примеры универсальных компьютерных шин[править | править код]

См. также[править | править код]

Примечания[править | править код]

  1. Ещё больше запутывает ситуацию, что в топологии локальных сетей также используется понятие шин: как логических, так и физической среды.

Ссылки[править | править код]

Частота шины процессора что это


Технические характеристики процессоров - Советы пользователю компьютера

Центральный процессор компьютера имеет ряд технических характеристик, которые определяют самую главную характеристику любого процессора — его производительность и о значении каждой из них полезно знать. Почему? Чтобы в дальнейшем хорошо ориентироваться в обзорах и тестированиях, а также маркировках ЦП. В данной статье я попытаюсь раскрыть основные технические характеристики процессора в понятном для новичков изложении.

Основные технические характеристики центрального процессора:

  • Частота и разрядность системной шины;

Рассмотрим подробнее данные характеристики

Тактовая частота

Тактовая частота —  показатель скорости выполнения команд центральным процессором. Такт — промежуток времени, необходимый для выполнения элементарной операции.

Единицей одного такта принято считать 1 Гц (Герц). Это значит, что если частота равна 1 ГГц (Гига Герц), то ядро процессора выполняет 1 млрд. тактов.

В недалеком прошлом тактовую частоту центрального процессора отождествляли непосредственно с его производительностью, то есть чем выше тактовая частота ЦП, тем он производительнее. На практике имеем ситуацию, когда процессоры с разной частотой имеют одинаковую производительность, потому что за один такт могут выполнять разное количество команд (в зависимости от конструкции ядра, пропускной способности шины, кэш-памяти).

Тактовая частота процессора пропорциональна частоте системной шины (см. ниже).

Разрядность

Разрядность процессора — величина, которая определяет количество информации, которое центральный процессор способен обработать за один такт.

Например, если разрядность процессора равна 16, это значит, что он способен обработать 16 бит информации за один такт.

Думаю, всем понятно, что чем выше разрядность процессора, тем большие объемы информации он может обрабатывать.

Обычно, чем больше разрядность процессора, тем его производительность выше.

В настоящее время используются 32- и 64-разрядные процессоры. Разрядность процессора не означает, что он обязан выполнять команды с такой же самой разрядностью.

Кэш-память

Первым делом ответим на вопрос, что такое кэш-память?

Кэш-память – это быстродействующая  память компьютера, предназначена для временного хранения информации (кода выполняемых программ и данных), необходимых центральному процессору.

Какие данные хранятся в кэш-памяти?

Наиболее часто используемые.

Какое предназначение кэш-памяти?

Дело в том, что производительность оперативной памяти, сравнительно с производительностью ЦП намного ниже. Получается, что процессор ждет, когда поступят данные от оперативной памяти – что понижает производительность процессора, а значит и производительность всей системы. Кэш-память уменьшает время ожидания процессора, сохраняя в себе данные и код выполняемых программ, к которым наиболее часто обращался процессор (отличие кэш-памяти от оперативной памяти компьютера – скорость работы кэш-памяти в десятки раз выше).

Кэш-память, как и обычная память, имеет разрядность . Чем выше разрядность кэш-памяти тем с большими объемами данных может она работать.

Различают кэш-память трех уровней: кэш-память первого (L1), второго (L2) и третьего (L3). Наиболее часто в современных компьютерах применяют первые два уровня.

Рассмотрим подробнее все три уровня кэш-памяти.

Кэш-память первого уровня является самой быстрой и самой дорогой памятью.

Кэш-память первого уровня расположена на одном кристалле с процессором и  работает на частоте ЦП (отсюда и наибольшее быстродействие) и используется непосредственно ядром процессора.

Емкость кэш-памяти первого уровня невелика (в силу дороговизны) и исчисляется килобайтами (обычно не более 128 Кбайт).

Кэш-память второго уровня — это высокоскоростная память, выполняющая те функции, что и кэш L1. Разница между L1 и L2 в том, что последняя имеет более низкую скорость, но больший объем (от 128 Кбайт до 12 Мбайт), что очень полезно для выполнения ресурсоемких задач.

Кэш-память третьего уровня расположена на материнской плате. L3 значительно медленнее L1и L2, но быстрее оперативной памяти. Понятно, что объем L3 больше объема L1и L2. Кэш-память третьего уровня встречается в очень мощных компьютерах.

Количество ядер

Современные технологии изготовления процессоров позволяют разместить в одном корпусе более одного ядра. Наличие нескольких ядер значительно увеличивает производительность процессора, но это не означает что присутствие n ядер дает увеличение производительности в n раз. Кроме этого, проблема многоядерности процессоров заключается в том, что на сегодняшний день существует сравнительно немного программ, написанных с учетом наличия у процессора нескольких ядер.

Многоядерность процессора, прежде всего, позволяет реализовать функцию многозадачности: распределять работу приложений между ядрами процессора. Это означает, что каждое отдельное ядро работает со “своим” приложением.

Частота и разрядность системной шины

Системная шина процессора (FSB — Front Side Bus) — это набор сигнальных линий для обмена информацией ЦП с внутренними устройствами (ОЗУ, ПЗУ, таймер, порты ввода-вывода и др.) компьютера. FSB фактически соединяет процессор с остальными устройствами в системном блоке.

В состав системной шины процессора входят шина адреса, шина данных и шина управления.

Главными характеристиками шины являются ее разрядность и частота работы. Частота шины — это тактовая частота, с которой происходит обмен данными между процессором и системной шиной компьютера.

Естественно, чем выше разрядность и частота системной шины, тем выше производительность процессора.

Высокая скорость передачи данных шины обеспечивает возможность быстрого получения процессором и устройствами компьютера необходимой информации и команд.

Здесь нужно отметить один важный пункт.

Частота работы всех современные процессоров в несколько раз превышает частоту системной шины, поэтому процессор работает на столько, на сколько ему это позволяет системная шина. Величина, на которую частота процессора превышает частоту системной шины, называется множителем.

xiod.ru

Системная шина — что это?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

что значит частота шины процессора

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И ее частота является важным параметром, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является пропускная способность. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы. Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

что значит частота шины процессора

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.

pc-information-guide.ru

Советы и рекомендации по выбору процессора для игрового компьютера

что значит частота шины процессораПроцессор является одним из ключевых компонентов компьютера, он осуществляет вычисления и выполняет команды, получаемые от программ. В современном мире есть два производителя компьютерных процессоров, пользующихся наибольшим авторитетом, это Amd и Intel. Чтобы при выборе компьютера сделать все правильно, необходимо детально ознакомиться с техническими характеристиками.

Тактовая частота и количество ядер

Тактовой частотой называют параметр, который измеряется в гигагерцах, к примеру, 2,21ГГц говорит о том, что конкретный процессор в течение одной секунды способен выполнить 2 216 000 000 операций. Таким образом, более высокая таковая частота позволяет быстрее обрабатывать данные. Это один из важнейших параметров, на который следует обращать внимание, выбирая процессор.

Не менее важно и число ядер, дело в том, что тактовую частоту на данном этапе развития больше увеличить нельзя, это побудило производить продолжить развитие в направлении параллельных вычислений, выражающемся в увеличении количества ядер. Число ядер информирует о том, какое количество программ можно запустить одновременно, не теряя быстродействие. Однако стоит учитывать, что в случае оптимизации программы под два ядра, то даже при их большем количестве, компьютер не сможет их полноценно использовать. [ содержание ]

Кэш и частота шины процессоров

Частота шины демонстрирует скорость передачи входящей и исходящей из процессора информации. Чем больше этот показатель, тем обмен информацией происходит быстрее, в качестве единиц измерения здесь выступают гигагерцы. Большую значимость имеет кэш процессора, представляющий собой высокоскоростной блок памяти. Он располагается непосредственно на ядре и служит для повышения производительности, так как в нём данные обрабатываются со значительно большей скоростью, чем в случае с оперативной памятью. Есть три уровня кэш памяти:

  • L1 – первый уровень самый незначительный по объёму, но наиболее быстрый, его размер варьируется в пределах 8 – 128 Кб.
  • L2 – второй уровень, намного медленнее первого, но превышает его по объёму, здесь размер варьируется в пределах 128 – 12288 Кб.
  • L3 – третий уровень, проигрывает в скорости первым двум уровням, но самый объёмный, к слову он и вовсе может отсутствовать, так как предусмотрен для специальных редакций процессоров или серверных решений. Его размер достигает 16384 Кб, он может присутствовать в таких процессорах, как Xeon MP, Pentium 4 Extreme Edition или Itanium 2.

[ содержание ]

Прочие параметры процессоров

Менее значимыми, но от того не теряющими актуальность при выборе процессора являются такие характеристики как сокет и тепловыделение. Сокетом называют разъём, куда устанавливается процессор в материнской плате, к примеру, если на маркировке процессора представлен сокет АМЗ, то нужна соответствующая материнская плата с идентичным сокетом. По показателям тепловыделения можно определить степень нагревания процессора в ходе работы. Это будет прямым указанием к выбору соответствующей системы охлаждения. Данный показатель измеряют в ватах, и он варьируется в пределах 10 – 165Вт.

Такая характеристика, как поддержка разнообразных технологий, определяет набор команд, предназначенных для улучшения производительности, к примеру, это может быть технология SSE4.Она представляет собой набор из пятидесяти четырёх команд, призванных увеличивать производительность процессоров в процессе работы с медиа контентом, игровыми приложениями задачами трёхмерного моделирования.

Масштаб технологий, определяемый размером полупроводниковых элементов, называется техническим процессом. Полупроводниковые элементы составляют основу внутренней цепи процессора, состоящей из транзисторов, которые соединены между собой соответствующим образом. В ходе совершенствования технологий и пропорционального уменьшения в размерах транзисторов, повышаются рабочие характеристики процессоров. К примеру, ядро Willamette, выполненное в соответствии с техпроцессом 0.18 мкм, обладает 42 000 000 транзисторов. В это же время ядро Prescott, соответствующее техпроцессу 0.09 мкм, располагает 125 000 000 транзисторов. [ содержание ]

Сравнение современных процессоров

Попробуем применить полученные знания на практике и сравнить два современных процессора, в качестве примера рассмотрим AMD FX-8150 Zambezi и Intel Core i5-3570K Ivy Bridge. В данном случае AMD может похвастаться более высокой тактовой частотой в 3600МГц, в то время как Intel ограничивается 3400ГГц. Это характеризует AMD как более быстродействующий процессор. Что касается количества ядер, то здесь AMD опять же лидирует с 8 ядрами, а вот у Intel всего 4 ядра, однако это очень скользкий момент, ведь приложения могут быть не оптимизированы под работу даже с 4-я ядрами, не то что с 8-ю. В том, что касается объёма кэша, то здесь Intel также значительно проигрывает конкуренту, самый большой, то есть кэш 3-го уровня L3 здесь всего 6144 Кб, в то время как у AMD этот показатель равен 8192 Кб. Объемы кэша второго уровня L2 отличаются еще более кардинально: 1024 Кб у Intel против 8192 Кб у конкурента. Опираясь на эти ключевые характеристики и надо выбирать процессор. В нашем случае я бы отдал предпочтение AMD FX-8150 Zambezi.

Теперь вы знаете все ключевые параметры и сможете выбрать процессор, который вам подойдет.

myblaze.ru

Ремонт компьютеров и ноутбуков в Харькове

Подробности Опубликовано 08 Декабрь 2013 Автор: Роман

Материнская плата - это печатная плата (PCB), которая соединяет процессор, память и все ваши платы расширения вместе для полноценной работы компьютера. При выборе материнской платы необходимо учитывать ее форм-фактор. Форм-фактор - это мировой стандарт, определяющий размер материнской платы, расположение интерфейсов, портов, сокетов, слотов, место крепления к корпусу, разъем для подключения блока питания.

что значит частота шины процессора

Форм-фактор

Большинство материнских плат, сделанные в настоящее время являются ATX, такие материнские платы имеют размеры 30.5 x 24.4 см. Немного меньше (24.4 x 24.4 см) форм-фактор mATX. Материнские платы mini-ITX имеют совсем скромные размеры (17 х 17 см). Материнская плата ATX имеет стандартные разъемы, такие как PS/2 порты, порты USB, параллельный порт, последовательный порт, встроенный в материнскую плату биос и т.д. ATX материнская плата устанавливается в стандартную корпус.

Чипсет материнской платы

Как правило, в материнскую плату установлены различные слоты и разъемы. Чипсет - это все микросхемы, имеющиеся на материнской плате, которые обеспечивают взаимодействие всех подсистем компьютера. Основными производителями чипсетов на данный момент являются компании Intel, nVidia и ATI (AMD). В состав чипсета входят северный и южный мост.

что значит частота шины процессораСхема чипсета Intel P67

Северный мост предназначен для поддержки видеокарты и оперативной памяти и непосредственной работы с процессором. Кроме того, северный мост контролирует частоту системной шины. Однако сегодня часто контроллер встраивается в процессор, это значительно снижает тепловыделение и упрощает функционирование системных контроллеров

Южный мост обеспечивает функции ввода и вывода, и содержащий контроллеры устройств расположенных на периферии, таких как аудио, жёсткий диск и прочие. Также в нём содержаться контроллеры шин, способствующие подключению периферийных устройств, к примеру, USB или шины PCI.

Скорость работы компьютера зависит от того, насколько согласовано взаимодействие чипсета и процессора. Для большей эффективности процессор и чипсет должны быть от одного производителя. Кроме того, необходимо учитывать, что чипсет должен соответствовать объему и типу оперативной памяти.

Сокет процессора

Soket - это вид разъёма в материнской карте, который будет соответствовать разъёму вашего процессора и предназначенный для его подключения. Именно разъём сокета разделяет материнские платы.

  • Сокеты начинающиеся на AM, FM и S поддерживают процессоры фирмы AMD.
  • Сокеты начинающиеся на LGA имеют поддержку процессоров фирмы Intel.

Какой именно тип сокета соответствует вашему процессору, вы узнаете из инструкции к самому процессору, а вообще выбор материнской платы происходит одновременно с выбором процессора, их как бы подбирают друг для друга.

Слоты оперативной памяти

При выборе материнской платы большое значение имеет тип и частота оперативной памяти. На данный момент используются память DDR3 с частотой 1066, 1333, 1600, 1800 или 2000 МГц, до нее была DDR2, DDR и SDRAM. Память одного типа не удастся подключить к материнской плате, если ее разъемы предназначены для памяти другого типа. Хотя на данный момент существуют модели материнских плат со слотами и для DDR2, и для DDR3. Несмотря на то, что оперативная память подключиться к материнской плате, предназначенной для большей частоты, лучше этого не делать, так как это негативно скажется на работе компьютера. Если в будущем предполагается увеличить объем оперативной памяти, то необходимо выбирать материнскую плату с большим количеством разъемов для нее (максимальное количество – 4).

PCI слот

В слот PCI можно подключать карты расширения, такие как звуковая карта, модем, ТВ-тюнеры, сетевая карта, карта беспроводной сети Wi-Fi и т.д. Хотим отметить, что чем больше данных слотов, тем больше дополнительных устройств вы сможете подключить к материнской плате. Наличие двух и более одинаковых PCI-E x16 слотов для подключения видеокарт говорит о возможности их одновременной и параллельной работы.

В виду того, что современные дополнительные устройства включают в себя системы охлаждения и просто имеют габаритный вид, они могут мешать подключению в соседний слот иного устройства. Поэтому даже если вы не собираетесь подключать к компьютеру кучу внутренних дополнительных плат, всё равно, стоит выбирать материнскую плату с как минимум 1-2 слотами PCI, чтобы вы смогли без проблем подключить даже минимальный набор устройств.

PCI Express

Слот PCI Express необходим для подключения PCI-E видеокарты. Некоторые платы, имеющие 2 и более разъема pci-e поддерживают конфигурацию SLI или Crossfire, для подключения нескольких видеокарт одновременно. Следовательно, если необходимо подключить одновременно две или три одинаковых видеокарты, например, для игр или работы с графикой, необходимо выбирать материнскую плату с соответствующим количеством слотов типа PCI Express x16.

Частота шины

Частота шины - это общая пропускная способность материнской платы, и чем она выше, тем будет быстрее производительность всей системы. Учтите, что частота шины процессора должна соответствовать частоте шины материнской платы, в противном случае процессор с частотой шины выше, поддерживаемой материнской платой, работать не будет.

Разъёмы для жёстких дисков

Самым актуальным на сегодняшний день является SATA разъём для подключения жёстких дисков, который пришёл на смену старому разъёму IDE. В отличие от ИДЕ, САТА имеет более высокую скорость передачи данных. Современные разъёмы SATA 3 поддерживают скорость в 6 Гб/с. Чем больше SATA разъёмов, тем больше жёстких дисков вы сможете подключить к системной плате. Но учтите, что количество жёстких дисков может быть ограничено корпусом системного блока. Поэтому если вы хотите установить более двух винчестеров, то убедитесь, что такая возможность есть в корпусе.

Несмотря на то, что разъём SATA активно вытесняет IDE, новые модели материнских карт всё равно комплектуют разъёмом IDE. В большей степени это делается для удобства апгрейда, то есть проведя обновление комплектующих компьютера, дабы сохранить всю имеющуюся информацию на старом жёстком диске с IDE разъёмом и не испытывать сложностей с её копированием.

Если вы покупаете новый компьютер и планируете использовать старый жёсткий диск, то максимум рекомендуем его задействовать как дополнительный винчестер. Лучше всё-таки имеющуюся информацию переписать на новый HDD с SATA подключением, так как старый будет заметно тормозить работу всей системы.

USB разъёмы

что значит частота шины процессора

Обратите внимание на количество USB разъёмов на задней панели материнской карты. Чем их больше, тем соответственно лучше, так как практически все существующие дополнительные устройства имеют именно USB разъём для подключения к компьютеру, а именно: клавиатуры, мышки, флешки, мобильный телефон, Wi-Fi адаптер, принтер, внешний жёсткий диск, модем и т.п. Чтобы задействовать все эти устройства необходимо достаточное количество разъёмов для каждого устройства.

USB 3.0 - это новый стандарт передачи информации через USB интерфейс, скорость передачи данных достигает до 4.8 Гб/с.

Звук

Каждая материнская плата имеет звуковой контроллер. Если вы любитель послушать музыку, то рекомендуем выбирать материнскую плату с большим количеством звуковых каналов.

  • 2.0 – звуковая карта поддерживает стереозвук, две колонки или наушники;
  • 5.1 – звуковая карта поддерживает аудиосистему объёмного звука, а именно 2 передних динамика, 1 центральный канал, 2 задних динамика и сабвуфер;
  • 7.1 – поддержка системы объёмного звука, имеет такую же архитектуру как для работы системы 5.1, только добавляются боковые динамики.

Если материнская карта имеет поддержку многоканальной аудиосистемы, то вы с лёгкостью сможете построить домашний кинотеатр на основе компьютера.

Дополнительные функции

Вентиляторы можно подключить к любой материнской плате, которая имеет разъёмы для вентиляторов (кулеров), для обеспечения надёжного и хорошего охлаждения всех внутренних комплектующих в системном блоке. Рекомендуется наличие нескольких таких разъёмов.

Ethernet - это контроллер, установленный на материнской плате, с помощью него осуществляется подключение к интернету. Если вы планируете активно пользоваться интернетом, и ваш Интернет-провайдер поддерживает скорость в 1 Гбит/с, то покупайте материнскую плату с поддержкой такой скорости. А вообще, если вы покупаете материнскую плату на довольно длительный промежуток времени, и в ближайшие 3 года не планируете её менять, то лучше сразу брать карту с поддержкой гигабитной сети, учитывая темпы развития технологий.

Wi-Fi встроенный модуль, понадобится поэтому если у вас есть WI-FI роутер. Купив такую материнскую плату, вы избавитесь от лишних проводов, но правда вай-фай не сможет порадовать вас высокой скоростью, как Ethernet.

Bluetooth - весьма полезная штука, так как благодаря блютуз контролеру Вы сможете не только загружать контент с компьютера на свой мобильный телефон, а так же подключить беспроводные мышку и клавиатуру и даже Bluetooth-гарнитуру, тем самым избавившись от проводов.

RAID контроллер - с ним можно не бояться за сохранность файлов на компьютере в случае поломки винчестера. Для включения этой технологии необходимо установить. как минимум 2 одинаковых жестких диска в режиме зеркала, и все данные с одного накопителя будут автоматически копироваться на другой.

Твердотельные конденсаторы — это использование более стойких к нагрузке и температуре конденсаторов, содержащих полимер. У них больший срок службы и они лучше переносят высокую температуру. Практически все производители уже перешли на них при изготовлении материнских плат.

Цифровая система питания - обеспечивает питание процессора и остальной схемы без перепадов и в достаточном объеме. На рынке присутствуют как дешевые цифровые блоки, которые ничем не лучше аналоговых, так и более дорогие и умелые. Понадобится, если у Вас слабый блок питания или некачественная электросеть, и Вы не пользуетесь UPS, или будете разгонять процессор.

Кнопки для быстрого разгона - позволяют повышать частоту шины или подаваемое напряжение одним нажатием. Будет полезна оверклокерам.

Защита от статического напряжения - эта проблема кажется несущественной, пока вы зимой не потянитесь к своему любимцу, предварительно сняв свитер. И хотя это происходит так нечасто, все же очень обидно сжечь плату одним неосторожным движением.

Military Class -  это прохождение тестирования платы в условиях повышенной влажности, сухости, холода, жары, перепада температуры и других стресс-тестов. Если материнская плата прошла все эти тесты, значит вывести из строя может разве что разряд молнии. Существую разные классы, отличающиеся набором пройденных испытаний.

Многобиосность сохранит Вам деньги и нервы после неудачных опытов с BIOS или UEFI. В противном случае, вы получаете нерабочую плату. И для ее восстановления понадобится найти другую рабочую материнскую плату, желательно такого же типа. В многобиосных платах можно просто переключиться на резервную UEFI. В некоторых платах это реализовано как откат до изначального UEFI. Очень пригодится для любителей экспериментов.

«Разогнанные» порты USB или LAN - это технология, встречающаяся практически на всех материнских платах. Заключается в том, что скорость USB увеличивается только при определенных условиях. А увеличение скорости сети LAN вы заметите только при уменьшении pingа в сетевых играх

itcom.in.ua

Как правильно выбрать материнскую плату и процессор

 Распечатать запись

Несомненно, одними из важнейших элементов, из которых состоит компьютер, являются процессор и материнская плата, причем вторая является основной платформой для компьютера. Поэтому к процессу выбора материнской платы нужно подходить очень тщательно, так как от этого напрямую  зависит эффективность работы  всей системы. Еще десять лет назад, материнская плата была лишь основой компьютерной системы, которая объединяла все устройства и обеспечивала правильное и совместное их функционирование. Сейчас же  в  «материнку» могут быть встроены как звуковая карта, так и процессор графического ускорителя, но об этом чуть позже. Так как же выбрать материнскую плату и процессор для нее, давайте разберемся поподробнее.

Материнская плата

При выборе материнской платы, основное внимание необходимо обращать на ее назначение, сокет для подключения, размер, частоту шины и чипсет. Обо всем об этом по порядку чуть ниже.

Прежде чем выбирать материнскую плату, необходимо определиться с ее назначением, то есть  для каких нужд она вам нужна. Первый вариант для работы, второй для развлечений, просмотра фильмов, компьютерных игр. Для работы можно выбирать материнскую плату средних параметров. Такая будет стоить недорого, однако работоспособность компьютера будет на уровне. Игровой вариант будет стоить дороже, так как для современных игр требования к системе будут повышенные.

Материнские платы существуют различных размеров. Стандартная «материнка» (ATX) имеет размер равный  12×9,62 дюйма. Также существуют micro-ATX, flex-ATX, mini-ITX. Стоит запомнить, что чем меньше форм фактор материнской платы, тем меньше ее производительность и функциональность. К примеру, на материнской плате типа mini-atx,  разъемов для подключения дополнительных модулей будет меньше, чем на плате типа ATX, да и греться она будет соответственно больше.

что значит частота шины процессора

Socket – это разъем на материнской плате компьютера, при помощи которого обеспечивается правильная работа процессора с устройством. Сокет может быть различной архитектуры, к примеру, Socket775 или Socket1155. Именно по причине различной архитектуры гнезда, первой необходимо приобретать материнскую плату, а потом уже процессор.

что значит частота шины процессора

Чипсет – это набор логических микросхем, который обеспечивает совместимость и управление всех устройств между собой. Чипсет состоит из Северного и Южного мостов. Северный мост предназначен для совместной работы процессора компьютера с видеокартой системы и ее оперативным запоминающим устройством. Также этот мост задает частоту специальной шины FSB. Если Северный мост обеспечен радиатором охлаждения, то это только плюс. Южный мост обеспечивает совместимость и правильную работоспособность процессора с флешками, винчестерами, разъемами USB и прочими. Медный радиатор является плюсом.

что значит частота шины процессора

Системная шина FSB характеризуется частотой. При выборе материнской платы, необходимо, чтобы частота шины была совместима с частотой FSB  шины процессора. Как правило, шина материнской платы поддерживает несколько частот, однако в некоторых моделях, максимально возможная частота шины доступна только после обновления заводских настроек BIOS`a системы.

Теперь о встроенных звуковой и видеокарте в материнку. Как правило, такие модули не обладают высокой мощностью и производительностью, однако для повседневного прослушивания музыки и просмотра фильмов в обычном качестве, эти устройства подойдут. Если же нужно что-то по-мощнее, то лучше приобретать звуковую  и видео карты по отдельности.

Процессор

Процессор является основным электронным устройством компьютера, которое отвечает за скорость  обработки информации. Поэтому процессоры следует выбирать исходя из своих запросов и системных требований материнской платы. Только в этом случае компьютер будет быстро обрабатывать данные.

Существует множество производителей процессоров, однако первые позиции занимают  процессоры компаний Intel и AMD. Система будет функционировать нормально если тип процессора и тип материнской платы совпадают. Если они различны, работоспособность системы может быть нарушена.

Основным системным средством быстродействия процессоров является его  тактовая частота. Тактовая частота, это количество производимых компьютером операций в секунду времени. К примеру, если указанная частота процессора равна 2,9 Ггц, то это значит что «Камень» способен обработать 2 миллиарда 900 миллионов операций в секунду.  Чем больше этот показатель, тем быстрее будет функционировать система.

что значит частота шины процессора

Следующий критерий выбора это сокет процессора. Как правило, процессор выбирают уже под определенную материнскую плату, поэтому сокеты «материнки» и «камня» должны совпадать.

Кэш память это сверхбыстрый буфер процессора для хранения часто используемых данных. Процессор не может ждать пока оперативная память компьютера ответит ему на поставленные запросы, поэтому кеш является важным системным критерием при выборе процессора. Сам кеш имеет три уровня, обозначается английской буквой L.  Так кеш первого уровня L1 является самым быстродейственным, хотя и самым малым по объему. Объем хранимых данных всего 16—128 Кбайт,L2 по объему больше, но по производительности медленнее,L3 самый большой по объему данных кеш. Он предназначается для просмотра фильмов или для игр со сложной графикой.

У процессора также есть системная шина FSB. Ее частота может достигать 1333 Ггц, это максимальное значение параметра. При выборе процессора под материнскую плату, необходимо сравнить показатели частоты этой шины у обоих устройств. Если значения параметра материнской платы не совпадают с показаниями параметров шины процессора, то лучше поискать другую материнскую плату либо другой процессор.

В качестве примера, можно взять материнскую карту со следующими параметрами: ASUS P8Z77-V Intel Z77 (Socket 1155; FSB 5000 МГц), 1xLGA1155, 4xDDR3 DIMM, 3xPCI-E x16, встроенный звук: HDA, 7.1, Ethernet: 1000 Мбит/с, форм-фактор ATX, DVI, HDMI, DisplayPort, USB 3.0.

что значит частота шины процессора

Из этих параметров следует, что нам необходимо найти процессор с сокетом 1155 серии, с частотой системной шины процессора около 5000 МГц и построенного по технологии Intel.  К этой материнской плате подходят процессоры  2-го и 3-го поколения Intel Core i7, i5, или i3.

что значит частота шины процессора

itnewbie.ru

Шины процессора - Информатика, программирование

3. Шины процессора

В основу архитектуры современных ПК положен магистрально – модульный принцип. Модульная архитектура предполагает магистральный (шинный) принцип обмена информацией между устройствами с помощью следующих шин:

- данных;

- адреса;

- управления.

Физически шины представляют собой многопроводные линии.

Шина данных

По этой шине данные, например считанные из оперативной памяти блоки информации, могут быть переданы процессору, а затем после обработки отправлены обратно в оперативную память для временного хранения. Основная характеристика шины данных – разрядность, которая определяется разрядностью процессора (количеством двоичных разрядов, обрабатываемых за один такт). Чем выше разрядность, тем больше пропускная способность. Процессоры x486 имели 32 – разрядные шины данных, Pentium – 64 – разрядные, а Pentium III – двойные 64 – разрядные .

Шина адреса

Известно, что каждое устройство ПК или ячейка оперативной памяти имеет свой адрес. Процессор выбирает устройства или ячейки памяти, в которые записывает или из которых считывает информацию по шине данных. Адрес же передается по адресной шине только в одном направлении от процессора к оперативной памяти и устройствам.

Разрядность шины адреса обуславливает количество ячеек оперативной памяти с уникальными адресами, которые можно рассчитать по формуле 2р, где р – разрядность шины адреса. Например, для 32 – разрядной шины адреса количество адресуемых ячеек памяти составляет 4 294 967 296 (232).

Шина управления

По шине управления передаются сигналы, определяющие характер обмена информацией. Сигналы управления определяют, какую операцию нужно выполнять, синхронизируют обмен информацией между устройствами и т. д.

4. Адресация

Почти все время работы процессора связано с оперативной памятью, из которой извлекаются и в которую заносятся данные (операнды), подлежащие обработке. Поэтому работа разбивается на несколько этапов, а их результаты сохраняются. Для этих цепей используется собственная память процессора (регистры).

Все действия по обработке данных в процессоре выполняются командами, представленными в определенном формате – комбинации размера всех полей и их расположения в команде. Команда делится на две области:

- область кода операции (указывает, что вообще необходимо делать);

- область адресов (операнд, с которым это надо делать).

Область адресов состоит из трех полей: в первых двух хранятся адреса операндов, а в третье записывается адрес результата действия над операндами.

В двухадресных командах область адресов состоит из двух полей: полей адресов первого и второго операндов, а адрес результата записывается в поле адреса первого операнда. В одноадресных командах область адресов состоит из одного поля, в котором находиться адрес операнда, а адрес второго операнда и результата совпадает с сумматором. Есть и безадресные команды.

Существует несколько типов адресации одного операнда:

- непосредственная адресация (вместо адреса операнда в команде указывается сам операнд (целое число));

- полный, или абсолютный, тип адресации (в команде указан полный адрес ячейки, где находятся данные);

- косвенная адресация (в поле адреса операнда может быть указан адрес регистра или ячейки оперативной памяти, где хранится тот же адрес, по которому можно найти ячейку с нужным операндом). Количество звеньев (или ступеней перехода) называется глубиной косвенной адресации.

Для нескольких операндов, или массивов, обычно указывается адрес массива и номер (индекс) элемента. Начальный адрес указывается в команде, где также имеется поле с номером регистра, в котором находится значение индекса или номер ячейки в массиве относительно начального адреса – модификация адресов. Существует и относительная адресация, когда в регистре указан начальный адрес, в команде – адрес этого регистра и смещение относительно начального адреса. Все остальные адреса операндов получатся суммированием адреса и смещения.

5. Разрядность

Первые процессорные регистры могли хранить лишь 4 – битные числа. Затем появились 8 – и 16 – битные процессоры, с появлением процессора x386 был реализован 32 – битный режим, что позволило работать с числами размерностью свыше двух миллиардов.

6. Кэш – память

Это статическая память (Statiс RAM – SRAM), которая, в отличие от динамической памяти, не требует периодической регенерации (обновления). Время доступа у этой памяти не более 2 нс., т. е. она может синхронно работать с процессором на частоте 500 МГц и более. Контроллер кэш – памяти находится в чипе северного моста чипсета материнской платы.

В x386 процессорах кэш – память объемом 128 Кб располагалась на материнской плате. Начиная с процессоров x486, появился дополнительный кэш в процессоре, работающий на его частоте, - кэш первого уровня (Level I – LI). На материнской плате устанавливается кэш второго уровня (L2). В большинстве современных процессоров кэш LI и L2 встроены в ядро процессора. Причем если в Pentium II и Pentium III кэш второго уровня работает на половинной частоте процессора, то у Celeron, AMD K6 – III, Athlon и Pentium IV – на частоте процессора, что положительно сказывается на производительности.


... работающих с мультимедиа и сопроцессором, эффективность процессора Pentium MMX меньше, чем у процессора Pentium с той же тактовой частотой [10]. Выпуск процессоров Pentium MMX возвестил о победе мультимедиа на персональных компьютерах. Кстати, MMX является сокращением от MultiMedia eXtensions (расширения для мультимедиа). В мае 1997 г. фирма Intel объявила о начале выпуска процессоров Pentium II. ...

... емкостью 320 Кбайт. Начиная с 1984 года выпускались гибкие диски 5,25 дюйма высокой плотности (1,2Мбайт). В наши дни диски размером 5,25 дюйма не используются, и соответствующие дисководы в базовой конфигурации персональных компьютеров после 1994 года не поставляются. Гибкие диски размером 3,5 дюйма выпускают с 1980 года. Односторонний диск обычной плотности имел емкость 180 Кбайт, двусторонний ...

... , что привлекает покупателей. По маркам лидируют мониторы фирм LG, Green Wood, Samsung Syng Master. Эти мониторы зарекомендовали себя как наиболее надежные и долговечные. 2.3 Контроль качества персональных компьютеров и комплектующих Объектом исследования являются настольные компьютеры: 3.   Компьютер Proxima на базе процессора Celeron 4.   Компьютер ...

... надёжность наших компьютеров.[4]   4. Выбор конфигураций ПК Проблема выбора персонального компьютера стоит достаточно остро не только для рядового пользователя, но и зачастую актуальна профессионалу в IT. Выбор персонального компьютера в первую очередь обусловлен суммой, которую будущий владелец готов выделить на покупку. В случае ограниченных ресурсов важно определиться с задачами, которые ...

=====================================

шины для легковых автомобилей в украине

шины скидки

шины 205 65 15

купить грузовые шины 7.50 r16

шины наварка как отличить

лебедь из шины пошагово

летние шины как выбрать

запчасти ваз 2104 олх

оставить заявку на запчасти

шины диски хмельницкий

купить шины россава

восстановленные шины profil

запчасти камаз умань

запчасти для насосной станции гардена

шины бу 22.5

партмастер запчасти

шины continental 185 65 r15

купить запчасти на htc one m7

шины повышенной проходимости r14

шины на ваз 2109 цена

запчасти blackview bv5000

какие шины малошумные

зимние шины nokian nordman rs2 отзывы

https://taksiua.com/sitemap.xml https://taksiua.com/sitemap-0.xml https://taksiua.com/sitemap-1.xml https://taksiua.com/sitemap-2.xml https://taksiua.com/sitemap-3.xml https://taksiua.com/sitemap-4.xml https://taksiua.com/sitemap-5.xml https://taksiua.com/sitemap-6.xml https://taksiua.com/sitemap-7.xml https://taksiua.com/sitemap-8.xml https://taksiua.com/sitemap-9.xml https://taksiua.com/sitemap-10.xml